

ADE IN THE USA

Gedung Graha Pena, Lt. 9 No. 902B, Batam 29461, Indonesia Tel: (62) 778 464 465 E-mail: sales@lfc.co.id

> 8 Ubi Rd 2, #03-01, Zervex Singapore 408538 Tel: (65) 6749 9697 Fax: (65) 6749 9390 E-mail: sales@lfc.com.sg

BAND SAW BLADES . SAWING MACHINES . CUTTING FLUIDS

Blade selector		3
Pitch selector solids		4
Pitch selector structurals		5
Band speed & group select	tor	6
Blade break-in		7
Blade characteristics		8-9

BI-METAL

Silencer GP	 10
Silencer PLUS	 11
StructurALL	 12
Penetrator	 13
PMP	 14
Supreme	 15
Coated	 16

TUNGSTEN CARBIDE

Tungsten Carbide T3P		17
Tungsten Carbide T3W		17
Tungsten Carbide STS		18
Tungsten Carbide Set Tooth	n	18

CARBON STEEL

Dart	 19
Metal Master	 20
Friction	 20
Olympia	 21

GRIT EDGE

Tungsten Grit	 22
Diamond	 23

Sawing machines	 24-25
Cutting fluids	 26-29
Fluid selector chart	 30
Notes	 31
Contact information	 32

<u> </u>
0
Ť
⁽⁾
Ň
U
Ψ.
S
Ð
Ō
¥
⁽¹⁾
Ш

 \bigcirc

	NON-METALS	NON-FERROUS		STEELS AN	ND ALLOYS		
				Machir	ability		
			EASY	MODERATE	DIFFICULT	VERY DIFFICULT	
	WoodPlasticRubber	 Aluminium Copper Brass Free machining steels 	Mild steelsLow carbonAlloy steels	High carbonTool steelsDie steels	 Stainless steels Titanium Nickel based alloys 	High nickel alloysSuper alloys	
STYLES							PAGE
BI-METAL	for highest productivity and lowe	st costs in most metal sawing ap	pplications				
Silencer GP	Longer wear life		General purpose Bi-Metal blade v	with longer wearing tooth			10
Silencer PLUS		Best all around choice for multi-p	urpose applications				1
StructurALL		Best choice for structurals, tubing	and bundles				12
Penetrator		Best choice for most high product	tion sawing applications				13
PMP				Longest wearing Bi-Metal high pr	oduction blade		14
Supreme					Most aggressive Bi/Metal blade with	ו varying tooth angle and tooth height	15
Coated			Coated blades improve wear resis	stance on Bi-Metal blades for exter	nded blade life		16
TUNGSTEN CARBIDE	for the very toughest and most a	tbrasive apllications that generation	e high cutting temperatures and	rapid tool wear			
ТЗР		For high production rate			Ultimate tooth for the toughest ma	laterials	17
T3W					Wave enhanced penetration		17
STS / Set Tooth	Very abrasive materials & cast alu	minium					18
CARBON STEEL	for easier-to-cut materials that g	enerate little heat or tool wear					
Dart	Hard back allows high band tensi	on, heavy feed					19
Metal Master	Lowest cost blade						20
Friction			Special high-speed sawing of ferr	ous metals up to 25 mm			20
Olympia	Mood						21
GRIT EDGE	for grinding materials too hard, to	oo brittle or too abrasive to mach	nine with a toothed blade				
Tungsten Grit	For hard, abrasive metals betwee	in 45 and 65 HRc					22
Diamond	Hardest, brittle, most abrasive ma	terials (not steel!)					53

Pitch selector

The Pitch indicates the tooth spacing. The correct pitch choice ensures proper tooth pressure and adequate gullet capacity for chips. In most applications, a blade should engage no less than 3 teeth and no more than 25 teeth, in the cut.

Single Pitch

(C)

- blades have uniform tooth spacing and shape.
- Pitch (teeth per inch) is the number of gullets in a 1-inch (25,4 mm) span.
- Use primarily for solids on rigid band machines.

Multi Pitchblades have varying tooth spacing to reduce vibrations.Pitch designation hyphenates single pitches of coarsest and finest teeth.

- Use for most sawing applications
- Best for structurals, or any vibration-prone application.

Pitch selector

This selector can be used to easily find the correct pitch for cutting profiles and tubing. Select the maximum dimension of the part to be cut on the horizontal scale. Then check on the vertical column the wall thickness measured and find the advised pitch in the table. For faster cutting, the next larger pitch can be used. It is not advised to use a finer pitch as the overfilling gullets will break the teeth. Cutting in bundles:

- For round tubing double the single wall thickness and find the correct pitch.
- For square and rectangular tubing, take in consideration the maximum distance to cut in the bundle and the combined wall thickness.

Wall thickness	TPI (teeth per inch) Dimension in mm B											
mm	20	40	60	80	100	120	150	200	300	500	750	1000
2	10 - 14	10 - 14	10 - 14	10 - 14	10 - 14	10 - 14	10 - 14	10 - 14	8 - 12	6 - 10	5 - 8	5 - 8
3	10 - 14	10 - 14	10 - 14	10 - 14	10 - 14	10 - 14	8 - 12	8 - 12	6 - 10	5 - 8	4 - 6	4 - 6
4	10 - 14	10 - 14	10 - 14	10 - 14	8 - 12	8 - 12	6 - 10	6 - 10	5 - 8	4 - 6	4 - 6	4 - 6
5	10 - 14	10 - 14	10 - 14	8 - 12	6 - 10	6 - 10	6 - 10	5 - 8	4 - 6	4 - 6	4 - 6	3 - 4
6	10 - 14	8 - 12	8 - 12	8 - 12	6 - 10	6 - 10	5 - 8	5 - 8	4 - 6	4 - 6	3 - 4	3 - 4
8		6 - 10	6 - 10	6 - 10	5 - 8	5 - 8	5 - 8	4 - 6	4 - 6	3 - 4	3 - 4	3 - 4
10		6 - 10	6 - 10	5 - 8	5 - 8	5 - 8	4 - 6	4 - 6	4 - 6	3 - 4	3 - 4	3 - 4
12		5 - 8	5 - 8	5 - 8	4 - 6	4 - 6	4 - 6	4 - 6	3 - 4	3 - 4	2 - 3	2 - 3
15			5 - 8	4 - 6	4 - 6	4 - 6	3 - 4	3 - 4	3 - 4	2 - 3	2 - 3	2 - 3
20			4 - 6	4 - 6	4 - 6	3 - 4	3 - 4	3 - 4	2 - 3	2 - 3	2 - 3	2 - 3
30				3 - 4	3 - 4	3 - 4	2 - 3	2 - 3	2 - 3	2 - 3	1,5 - 2	1,5 - 2
50						3 - 4	2 - 3	2 - 3	2 - 3	1,5 - 2	1,5 - 2	1,5 - 2
75								1,5 - 2	1,5 - 2	1,5 - 2	1,5 - 2	1 - 1,5
100									1,5 - 2	1 - 1,5	1 - 1,5	1 - 1,5
150										1 - 1,5	1 - 1,5	1 - 1,5
200										1 - 1,5	1 - 1,5	1 - 1,5

© Band speed & group selector

					CHOST		Cutting speed (m/min)					
Material group	Group	DIN	Werkstoff	AISI (SAE) GHOST			Bi-Metal			Carbide		Pomarke
material group	number	DIN	number		Diameter >>>	<100mm	100-400mm	>400mm	<100mm	100-400mm	>400mm	Remarks
				В	lade width >>>	34 mm	41 mm	54 mm	34 mm	41 mm	54 mm	
Structural steels		St37 / St42	1.0037 / 1.0042	1015	St3ps	70 - 90	60 - 80	50 - 70	120 - 160	110 - 150	100 - 140	ļ
		St52 / St60	1.0050 / 1.0060	ASTM-A570	St6ps	45 - 60	40 - 55	40 - 55	90 - 120	85 - 120	95 - 125	ļ
Free machining		9S20	1.0711	1112/1212		60 - 80	50 - 65	55 - 70	120 - 160	110 - 150	120 - 160	ļ
	1	C10 / C15	1.0301 / 1.0401	1010 / 1015	10	60 - 80	50 - 65	55 - 70	120 - 160	110 - 150	120 - 160	
Cementation ste		16MnCr5	1.7131	5115	18XG	40 - 50	35 - 45	35 - 45	75 - 100	75 - 100	75 - 100	
		20CrMo5	1.7264		20XM	40 - 50	35 - 45	35 - 45	75 - 100	75 - 100	75 - 100	
		21NiCrMo2	1.6523	8620	20XGNM	40 - 50	35 - 45	35 - 45	75 - 100	75 - 100	75 - 100	-
Bearing steel		100Cr6	1.2067	52100	9X2	35 - 45	30 - 40	30 - 40	70 - 95	70 - 90	65 - 90	
Spring steels	2	65SI7	1.5028	9260H	60S2	35 - 50	30 - 45	30 - 45	70 - 95	70 - 95	70 - 95	
		50CrV4	1.8159	6150	50XFA	35 - 50	30 - 45	30 - 45	70 - 95	70 - 95	70 - 95	
Hot working	2	C35 / C45	1.0501 / 1.0503	1035/1045	35 / 45	45 - 60	40 - 55	40 - 55	90 - 125	85 - 120	95 - 125	}
steels	3	42Crivio4	1.7225	4140		40 - 50	35 - 45	35 - 47	77 - 105	75 - 100	75 - 103	}
Nitriding steel		34CrNIM06	1.6582	4337	38X2N2MA	25 - 35	23 - 31	24 - 33	50 - 70	50 - 68	55 - 75	-
Nitriaing steel		3401AID	1.2081	HZI	372785	24 - 32	21 - 28	23 - 31	48 - 65	40 - 63	51-69	ł
high alloyed	4		1.2311	LI12		20-35	23-31	24 - 33	19 65	16 62	54 - 74	
steels		56NiCrMoV/7	1.2344			24 - 32	21 - 20	23-31	40 - 00	40 - 03	51-09	
Upalloved tool		C125W/	1.2713	W/112		20-33	23 - 31	24 - 33	69 - 93	68 - 92	68 - 02	
steels	5	C80\\/1	1.1505	W108	1184-1	34 - 40	31 - 41	31 - 41	60 - 03	68 - 92	68 - 92	1
		X210Cr12	1.1323	0100	X12	20 - 27	17 - 23	19 - 26	40 - 55	38 - 52	42 - 57	Drv
Cold working	6	X155CrVMo12-1	1.2000	D2	712	20 - 27	17 - 23	19 - 26	40 - 55	38 - 52	42 - 57	Dry
steels	, i i i i i i i i i i i i i i i i i i i	90MnCrV8	1 2842			34 - 46	31 - 41	31 - 41	69 - 93	68 - 92	68 - 92	5.9
		S 6-5-2	1 3343	M2	R6M5	29 - 39	24 - 33	26 - 35	58 - 78	54 - 74	58 - 78	-
		S 3-3-2	1.3333		R3AM3F2	29 - 39	24 - 33	26 - 35	58 - 78	54 - 74	58 - 78	
High-speed	7	S 2-10-1-8	1.3247	M42		29 - 39	24 - 33	26 - 35	58 - 78	54 - 74	58 - 78	
steels		S 10-4-3-10	1.3207		R12F3K10M3	29 - 39	24 - 33	26 - 35	58 - 78	54 - 74	58 - 78	1
		S 18-0-1	1.3355	T1	R18	29 - 39	24 - 33	26 - 35	58 - 78	54 - 74	58 - 78	1
Cost incu		GG30	0.6030	A48	Sc30	31 - 41	26 - 36	28 - 37	61 - 83	53 - 71	55 - 75	Dry
Cast Iron	ö	GGG50	0.7050	A536	Vc50	31 - 41	26 - 36	28 - 37	61 - 83	53 - 71	55 - 75	Dry
	0	X8CrNiS18-9	1.4305	303	12X18N9	33 - 41	26 - 35	28 - 39	60 - 81	52 - 70	57 - 77	
Stainlass	3	X5CrNi18-10	1.4301	304	08X18N10	33 - 41	26 - 35	28 - 39	60 - 81	52 - 70	57 - 77]
steels		X6CrNiMoTi17-12-2	1.4571	316Ti	10X17N13M2T	23 - 31	20 - 26	21 - 29	45 - 61	39 - 53	43 - 58]
	10	X5CrNiMo17-12-2	1.4401	316		23 - 31	20 - 26	21 - 29	45 - 61	39 - 53	43 - 58	ļ
		X20Cr13	1.4021	420	20X13	27 - 36	24 - 32	27 - 36	54 - 73	48 - 65	63 - 72	
		X45CrSi9-3	1.4718	HNV3	40Ch9S2	24 - 32	21 - 28	23 - 31	48 - 65	46 - 63	51 - 69	ļ
		X12CrCoNi21-20	1.4971	661		15 - 21	12 - 17	13 - 18	31 - 41	24 - 33	26 - 35	ļ
Heat resistant	11	X20CrMoWV12-1	1.4935	616		27 - 36	24 - 32	27 - 36	54 - 73	48 - 65	54 - 72	ļ
steels		X15CrNiSi25-20	1.4841	314	20X25N20S2	15 - 21	12 - 17	13 - 18	31 - 41	24 - 33	26 - 35	
		X12NiCrSi36-16	1.4864	330		15 - 21	12 - 17	13 - 18	31 - 41	24 - 33	26 - 35	INCOLOY DS
		X8CrNiAlTi20-20	1.4847	334		15 - 21	12 - 17	13 - 18	31 - 41	24 - 33	26 - 35	INCOLOY 840
Nickel base		NiCr19NbMo	2.4668	5596E (AMS)		10 - 13	9 - 12	10 - 13	20 - 26	17 - 23	20 - 27	INCONEL 718
alloys	12	NiCr13Mo6Ti3	2.4662	5660J (AMS)		10 - 13	9 - 12	10 - 13	20 - 26	17 - 23	20 - 27	NIMONIC 901
		NiCo20Cr20MoTi	2.4650	5872D (AMS)		10 - 13	9 - 12	10 - 13	20 - 26	17 - 23	20 - 27	NIMONIC 263
Aluminium	13	6003				95 - 115	100 - 120	100 - 120	175 - 200	175 - 200	170 - 225	-
Copper	14	AA1100				95 - 115	100 - 120	100 - 120	175 - 200	175 - 200	170 - 225	
Brass	15				<u> </u>	50 - 70	40 - 60	35 - 45	100 - 140	80 - 120	170 - 90	
Alu-pronze	16	CUZU39PD1AIB-B			<u> </u>	73 - 110	13-110	85 - 115	175 - 200	175 - 200	170 - 225	
Titanium alloys	17	Ti-6AI-4V				13 - 23	10 - 20	10 - 15	40 - 50	40 - 50	35 - 45	
Steels with		1000-1200 N/mm2				30 - 35	25 - 30	20 - 25	60 - 70	50 - 60	40 - 50	ļ
tensile		1200-1400 N/mm2				25 - 30	20 - 25	15 - 20	50 - 60	40 - 50	30 - 40	ļ
strength more than 1.000 N/mm2	18	1400-1600 N/mm2				20 - 25	15 - 20	10 - 15	40 - 50	30 - 40	20 - 30	

Blade break-in procedure

Why break-in a band saw blade?

The teeth of a new saw blade are too sharp and therefore have the risk to "hang" themselves in the material being cut. This can cause little fragments to breakout at the cutting edge. The damaged tooth tips will shorten the life of a sawblade. To prevent this, the new blade should cut thinner chips from the material. This is done by reducing the Feed Force.

Bandspeed should be set as normal!

Breaking in the blade

Bi-Metal

ProcedureReduce Feed Force during first 20 minutes of cutting to 50% of normal feed.Then gradually increase feed force in 4 steps to normal in about 10 minutes.

Carbide tipped sawblade with Set Tooth

ProcedureReduce Bandspeed during first 20 minutes of cutting to 70% of normal speed.Reduce Feed Force during first 20 minutes of cutting to 50% of normal feed.Then gradually increase bandspeed and feed force in 4 steps to normal in about 10 minutes.

Triple Chip Carbide tipped

ProcedureReduce Feed Force during first 40 minutes of cutting to 50% of normal feed.Then gradually increase feed force in 4 steps to normal in about 10 minutes.

© Blade characteristics

Saw blade characteristics									
a) Width (b)	Gauge → ← c)	Set → ←		d) Pitch					
e) Set patterns	↑ Raker set	Straight set ■	Straight raker set	t					
f) Tooth forms	Precision		Claw	Buttress					
g) Rake angles	0º to 18º rake		10º rake	0º rake					
a) Width is the dimension fro to the back edge.b) Thickness (gauge) is the n of the blade.	m the tooth tips	 for fast, a that fits the for conto cut the site Choose the small bar 	 TIPS for fast, accurate sawing, choose the widest blade that fits the machine. for contour sawing, choose the widest blade that will cut the smallest part radius. (See chart on page 9) Choose the thinner option for longer flex life over small band wheels. Choose the thicker option for straighter cuts under 						
c) Set is the dimension acros	s the offset teeth	heavy fee	• Choose the standard set for most applications						
		Choose in highly	 Choose the standard set for most applications Choose the wider (heavier) set to avoid pinching in highly stressed metals and large structurals. 						
d) Pitch (teeth per inch or TP tooth spacing.	l) is a measure of	 Consider Single pir The num Choose a application between multi-piton designation 	 Consider a single pitch blade for fast cutting materials. Single pitch blades have consistent tooth spacing. The number of teeth over one-inch length is the TPI. Choose a multi-pitch blade for most metal sawing applications. Multi-pitch blades vary tooth spacing between two extremes. The pitch designation of a multi-pitch blade hyphenates the equivalent single pitch designations of those extremes. 						
e) Set pattern is the sequence the teeth.	e used in offsetting	 Choose Choose and non- Straight 	 Choose raker set for sawing ferrous and tough metals. Choose straight set for easily machined metals and non-metals. Straight raker set is used for all multi pitch blades. 						
f) Tooth forms are combinatio and gullet shape.	ns of rake angle	• Choose • Consider • Use But	Precision for most Claw to increase b tress for woodwork	t sawing applications. eam strength and penetration. king applications.					
 g) Rake angle is a measure of inclination to the work. Rake neutral, positive or negative 8 Band saw blades 	of the tooth face (e angles are e.	 Choose a than 50 r Choose a tougher t Choose a 	a neutral rake blad nm. a positive rake blad o penetrate work. a negative rake bla	le for most work narrower de for wider, ade for case hardened work.					

			Chip	characteris	stics			
Chip form	デン	S	6	0	anna G	\supset		6
Condition	Thick, hard, short	Thick, hard, brittle	Thick, hard, springy	Thin, hard, springy	Thin, curly, springy	Thin, straight, springy	Powdery	Thin, tightly curled
Color	Blue or Brown	Blue or Brown	Silver or light straw	Silver	Silver	Silver	Silver	Silver
Band speed	Reduce	Reduce	ОК	Reduce slightly	ОК	ОК	Reduce	ОК
Feed rate	Reduce	Reduce	Reduce slightly	Increase slightly	ОК	Increase	Increase	Reduce
Other	Check cutting fluid & mix ratio	Check cutting fluid & mix ratio	Check for correct blade pitch	Check for correct blade pitch				Use a coarser pitch blade

Radius chart

The blade width is measured from the tooth tips to the back edge.

• For contour cuts, use the widest blade that will cut the smallest radius needed for the job.

SILENCER

FEATURES

M42 HSS tooth

(C)

- Neutral rake tooth
- Wide range of sizes and pitches

BENEFITS

- Strong, wear-resistant tooth stays sharp longer
- Best choice for small machines and short blade lengths

APPLICATION

All metals in tubing, profiles and small solids

Me	tric						SIL	ENCER	GP					
Width	Gauge	3-4	4	4-6	5-8	6	6-10	8	8-12	10	14	10-14	18	24
6	0,9											303-010		
10	0,9					303-011						303-014		
13	0,6						303-933		303-935		303-019	303-133	303-026	303-027
	0,9				303-932	303-020	303-934		303-936			303-028		
20	0,9			303-410	303-182		303-415		303-300			303-420	303-430W	
27	0,9	303-903	303-735	303-900	303-905	303-743	303-901	303-750	303-400	303-768		303-769		
				303-471	303-475									
34	1,1	303-904		303-902	303-539	303-770	303-562		303-600					
				303-099										
41	1,3			303-687	303-729		303-610							

MATERIAL GROUP

1 2 3 4 9 10

SILENCER

FEATURES

- M42 HSS tooth
- Positive rake tooth
- Special tooth form

BENEFITS

- Aggressive, wear resistant, multi-purpose blade
- Several wide set pitches for greater back clearance

APPLICATION

Multi purpose blade for all metals in tubing, profiles, solids and bundles.

Ме	tric					SILENCE	ER PLUS				
Width	Gauge	1-1,3	1-1,5	1,5-2	2-3	3	3-4	4	4-6	5-8	6
6	0,9										333-046
10	0,9							306-487			
13	0,9					333-023		306-488			333-026
20	0,9					333-103			333-146	333-158	
27	0,9				333-223		333-234		333-246	333-258	
34	1,1				333-323		333-334		333-346	333-358	
41	1,1	336-413									
	1,3				333-423		333-434		333-446	333-458	
54	1,3			306-445	336-523		336-534		336-546	336-558	
	1,6	306-511		306-512	333-523		333-534		333-546		
							306-610				
67	1,6	306-611	306-660	306-612	306-640						
80	1,6	306-711	306-760	306-712	306-723						

MATERIAL GROUP

1 2 3 4 8 9 10

StructurIALL

(C

FEATURES

M42 HSS tooth

materials

and bundles

- Positive rake tooth
- Special ground tooth form
- Extreme shock proof design

APPLICATION

BENEFITS

• Controlled, quiet sawing of non-solid

• Tooth resists stripping in structurals

• Strengthened teeth, long blade life

Tubing and structurals both single and in bundles or nests

Ме	tric	STRUCTURALL							
Width	Width Gauge		3-4	4-6	5-8				
27	0,9		320-234	320-246	320-258				
34	1,1		320-334	320-346	320-358				
41	1,3	320-423	320-434	320-446	320-458				
54	1,3	340-523	340-534	340-546					
	1,6	320-523	320-534	320-546					
67	1,6	320-623	320-634	320-646					
		320-625							

Wide Set precision teeth provide greater back clearance

FEATURES

- M42 HSS tooth
- High positive rake curvilinear tooth
- Ground teeth

BENEFITS

- Fast cutting, wear resistant blade
- Designed for production sawing

APPLICATION

Moderate to difficult alloys on power saws for high production

Metric			PENETRATOR										
Width	Gauge	0,8-1,2	1-1,5	1,3	1,5-2	2	2-3	3	3-4	4-6	6	5-8	
27	0,9						301-423	301-719	301-598	301-615	301-127	301-656	
34	1,1			301-594		301-842	301-689	301-226	301-739	301-748		301-789	
41	1,3		301-330		301-880		301-879	301-796	301-887	301-375		301-379	
54	1,3		301-949		301-977		301-381				301-994		
	1,6	301-072	301-071	301-073	301-070		301-069		301-085	301-384			
										301-091			
67	1,6	301-183	301-185	301-966	301-186		301-184		301-187	301-181			
80	1,6	301-430	301-433	301-982					301-990				

MATERIAL GROUP

2	3	4	5	6	9	10
11	13	14	15	16	17	

PMP

• Powder metal HSS tooth with 70 HRc hardness

 \mathbb{C}

- High positive rake curvilinear tooth
- Aggressive ground tooth design

BENEFITS

• Most wear-resistant Bi-Metal tooth

• Fast production sawing

Moderate to difficult alloys on power saws in high production rates with extended blade life

Me	Metric		РМР								
Width	Gauge	1-1,5	1,5-2	2-3	3-4	4-6	5-8				
27	0,9				307-660	307-665	307-670				
34	1,1			307-689	307-739	307-759	307-760				
41	1,3		307-877	307-879	307-887	307-893					
54	1,6		307-901	307-902							
67	1,6	307-911	307-913	307-912							

MATERIAL GROUP

 2
 3
 4
 5
 6
 7
 8
 9
 10

 11
 12
 17
 18

FEATURES

- M81 powder metal tooth tip 70 HRc
- Varying tooth angle and tooth height
- Extremely positive rake angle

BENEFITS

- Higher cutting rates
- Long tool life on difficult to cut materials
- Improved penetration

APPLICATION

Difficult to cut materials like nickel based alloys and other exotics

Metric			SUPREME									
Width	Gauge	0,8-1,2	1-1,3	1,5-2	2-3	3-4	4-6	5-8				
27	0,9					381-234	381-246	381-258				
34	1,1				381-323	381-334	381-346	381-358				
41	1,3			381-412	381-423	381-434	381-446					
54	1,6	381-581	381-511	381-512	381-523							
67	1,6	381-681	381-611	381-612								
80	1,6	381-781	381-711									
		-										

MATERIAL GROUP

7 8 9 10 11 12 17 18

Coated

FEATURES

- TiN Penetrator
- TiN Supreme
- Low surface friction

BENEFITS

- Provides longer blade life
- Improved wear resistance
- Easy to difficult-to-machine metals

Use these blades to saw any materials recommended for Penetrator and Supreme blades

Me	Metric		TiN Coated PENETRATOR									
Width	Gauge	1-1,5	1,5-2	2-3	3-4	4-6	5-8					
27	0,9			319-423	319-598	319-615	319-645					
34	1,1			319-558	319-533	319-567	319-789					
41	1,3		319-880	319-640	319-319	319-375						
54	1,6	319-071	319-070	319-327	319-085							
67	1,6	319-185		319-184								
80	1,6	319-433										

Me	tric	TiN Co	oated SUP	REME
Width	Gauge	2-3	3-4	4-6
27	0,9		319-634	319-635
34	1,1	319-656	319-658	
41	41 1,3		319-814	

MATERIAL GROUP

See Penetrator and Supreme blades

T3P & T3W Carbide

		1000	and the second second	- HARLAN	100-00	
Ме	tric		-	F3P Carbid	e	
Width	Gauge	0,7-1	1,3-2	2-3	3	3-4
20	0,9				326-025	
27	0,9			328-223	326-035	328-234
34	1,1			328-323	326-045	328-334
41	1,3		328-431	328-422	326-074	328-434
54	1,6	328-571	328-532	328-523		
67	1,6	328-671	328-672			
	1.0	328-771				

000	1 6								
00	1,0	328-773							
Ме	etric	T3W Carbide							
Width	Gauge	0.7-1.0	1,3-2	2	2-3	3-4			
34	1,1					327-334			
41	1,3		327-431	327-375	327-422				
54	1,6		327-532		327-523				
67	1,6	327-671	327-672						

Ме	tric	T3N Carbide
Width	Gauge	3-4
34	1,1	331-334
41	1,3	331-434

80

1,6

FEATURES

T3P Carbide

- Tungsten Carbide tooth
- Triple Chip tooth design
- Positive rake tooth

T3W Carbide

- Tungsten Carbide tooth
- Triple Chip tooth design
- Positive rake tooth
- Wave tooth height variation

BENEFITS

T3P Carbide

- · Most heat and wear resistant tooth tip
- Smooth finish
- Aggressive sawing

T3W Carbide

• All the advantages of Production TC blade with enhanced penetration for the toughest metals

APPLICATION

T3P Carbide

Super alloys, high-nickel alloys, titanium etc.

T3W Carbide

Large diameters super alloys, high-nickel alloys, titanium etc.

T3N Carbide

For case hardened materials

MATERIAL GROUP

11 12 13 14 15 16 18

STS

Metric

Gauge

0,9

1,1

1,3

1,6

1.6

Width

27

34

41

54

67

FEATURES

- Tungsten Carbide tooth
- Left, right, center and chamfered raker tooth
- Great back clearance

STS

2-3

366-230

366-330

366-430

3-4

366-140

366-240

366-340

366-440

1,3-2

366-320

366-420

366-520

1,0-1,3

366-510

BENEFITS

- Special double set cutting operation
- Three teeth cutting sides and bottom and fourth tooth controlling direction

High performance cutting of difficult alloys like nickel steels and non-ferrous metals

MATERIAL GROUP

4 5 6 7 9 10 11 12 16 17 18

FEATURES

- Tungsten Carbide tooth
- Set tooth design
- Positive rake tooth

BENEFITS

• Withstands rapid tool wear caused by fast cutting of highly abrasive materials

Me	tric	Set Tooth		
Width	Gauge	2,5		
10	0,6	305-015S		
13	0,6	305-020S		
20	0,9	305-025S		
27	0,9	305-045S		
27	0,9	305-029R		
34	1,1	305-326R		
41	1,3	305-375R		

APPLICATION

Abrasive materials that dull Bi-Metal blades rapidly like: aluminium castings, graphite, fiberglass etc.

e	Take	1001	n		

Dart

M	etric						DART					
Width	Gauge	1,3	2	3	4	6	8	10	14	18	24	32
5	0,6				308-825			308-023	308-049	308-064		
6	0.6				309-021*	309-047*		308-080	308-106	308-122	308-148*	308-601
0	0,0				308-841*							
10	0.6			309-062	309-088*	309-104	308-163	308-189	308-205*	308-221*		
10	0,0				308-908							
13	0.6					308-247		308-262*	308-288*	308-304		
15	0,0			309-120*	309-146*	309-161*		308-627	308-643		308-668	
16	0,8							308-346				
20	0.8					308-403*	308-429*	308-445*	308-486*			
20	0,0			309-187*		309-203*		308-700	308-742	308-767		
25	0,9			309-229*		308-502*	308-528*	308-544*	308-585*			
			308-973	309-211S*								
32	0,9	**309-948	**309-955	309-260								
38	0,9	**309-989										

Metal Master

FEATURES

- Carbon steel teeth
- Flexible back
- Hardened tooth tip

BENEFITS

- Low cost band saw blade
- Contour sawing

		ΔΤΙ	
AFF	LIC	АП	

Easy non-ferrous metals, plastics and wood

Me	tric	METAL MASTER						
Width	Gauge	3	4	6	10	14	18	24
1,5	0,6							334-043
3	0,6					334-100		
6	0,6		335-348		334-227*	334-243*	334-268	
10	0,6			335-422	334-326*	334-342		
13	0,6	335-488	335-462	335-505*	334-409		334-449	
20	0,8	335-547			334-581*			
25	0,9	335-620			334-748			

Claw Tooth

Friction

* = Available in 30,5 m or 152,4 m coils

- **FEATURES**
- Silicon-enhanced carbon steel
- Special wide set
- Hardened tooth tips

BENEFITS

• Slower set wear and longer fatigue life

APPLICATION

Ferrous metals of any hardness up to 25 mm thick at speeds exceeding 1500 m/min.

Ме	tric	FRIC	TION
Width Gauge		8	10
13	0,8		310-037
20	0,9		310-094
25	0,9	310-134	310-136
32	0,9		310-359*

* = Available in 91,4 m coils other sizes 152,4 m coils

Olympia

Me	tric	OLYMPIA						
Width	Gauge	1,3	2	3	4			
6	0,6				358-054			
	0,6			358-108	358-118			
10	0.8		358-104	358-114				
	0,0			358-111S				
12	0,6			358-152				
15	0,8			358-156				
16	0,8		358-211S	358-215				
20	0,8		358-252	358-256				
25	0.0			358-328				
20	0,5		358-304					
32	0,9	358-356	358-362					
38	0,9	358-423						
50	0,9	358-513						

FEATURES

- Precision milled tooth form
- Flame hardened tooth tips
- Spring hardened back

BENEFITS

- Long blade life
- Typical woodworking operations
- Strong blade for accurate contouring

APPLICATION

Woods and plastics

Tungsten Grit

FEATURES

- Tungsten carbide grit edge
- Segmented for large materials; continuous for materials up to 25 mm

APPLICATION

BENEFITS

• Cuts hardened steels up to 65 HRc and a wide range of hard or abrasive materials

Hardened steels, glass, foamglass, car tires, friction materials, low density ceramics etc.

Ме	tric	Pitch	Edge Type			
Width	Gauge	Class	Continuous	Segmented		
6	0,5	Medium	325-043	325-035		
10	0.6	Medium	325-167	325-159		
10	0,6	Medium Coarse		325-175		
	0.5	Medium	325-324	325-316		
	0,5	Medium Coarse	325-327	325-330		
13		Fine	325-332			
	0,6	Medium	325-365	325-357		
		Medium Coarse		325-373		
		Medium	325-548	325-530		
20	0,8	Medium Coarse		325-555		
		Coarse	325-589	325-571		
	0,9	Medium	325-712			
25		Medium Coarse	325-746	325-738		
20		Coarse	325-779	325-753		
		Deep Gullet Coarse*		325-754		
	0,9	Medium Coarse		325-800		
		Coarse	325-846	325-837		
32		Medium Coarse				
	1,1	Coarse	325-850	325-852		
		Deep Gullet Coarse*		325-870		
		Deep Gullet Coarse*		325-936		
38	1,1	Coarse		325-951		
		Extra Coarse		325-960		
42	1,3	Coarse		325-965		

Continuous edge blades reduce work chipping, especially in thin sections
 Segmented edge blades carry coolant through large work sections
 *Deep gullet for greater swarf clearance

Diamond

FEATURES

- Diamond grit edge
- Segmented for large materials;
- continuous for materials up to 25 mm
- For use on special vertical machines

BENEFITS

• Hardest material known grinds the hardest, most brittle, most abrasive special applications

Metric		Туре	DIAMOND with stainless steel backing Grit size									
Width	Gauge		25/30	35/40	60/80	100/120						
25	25 1,0	Continuous		406-421	406-462							
25		1,0	1,0	1,0	1,0	1,0	1,0	1,0	Segmented		406-442	406-433
20	1,0	1,0	32 1,0	Continuous	406-450	406-428	406-476					
32				1,0	1,0	1,0	Segmented	406-455	406-447	406-483		
38	1,0	Continuous	406-485	406-480								
50	1,0	Continuous	406-496									
Kerf	Factor	Milimeters	1,6	1,4	0,6	0,4						

APPLICATION

Silicon, glass, quartz, abrasive composites, hard graphites, carbide, marble, limestone, brake linings etc.

NOT FOR STEEL!

Ме	tric	Туре		DIAMOND Grit size					
Width	Gauge		25/30	35/40	40/50	60/80	100/120	200	
13	0,5	Continuous			406-942	406-918			
	0.5	Continuous			406-959	406-926	406-750	406-769	
19	0,5	Segmented			406-741				
	1,0	Continuous	406-829	406-825					
	0.5	Continuous			406-967	406-934	406-971		
05	0,5	Segmented			406-827	406-843	406-846		
25	1,0	Continuous	406-987	406-983		406-553	406-016		
		Segmented		406-520		406-546			
	0,5	Continuous			406-807	406-804	406-802		
		Segmented			406-813				
32	1.0	Continuous	406-991	406-820		406-814			
	1,0	Segmented	406-512	406-821		406-815			
	0,5	Continuous			406-817				
38	1.0	Continuous	406-828	406-823		406-818			
	1,0	Segmented	406-913	406-909					
50	1.0	Continuous	406-836			406-830			
50	1,0	Segmented	406-837			406-833			
Kerf	Factor	Milimeters	1,6	1,4	0,9	0,6	0,4	0,3	

Note 1: Shaded areas show available bands (minimum order required) Note 2: To determine approximate kerf add kerf factor to gauge of the band

Amine-free metal working coolants for high performance. All these water miscible EP coolants are formulated from mineral oil. These 2nd generation coolants are free of amines and boric acid and are bio-stable. The amine-free coolants offer excellent protection for operator and environment.

Metal working coolants for high performance. All these coolants are free of chlorine and nitrite and are bio-stable.

The demands on water-miscible metal working coolants are changing continuously because of production, environmental and operator safety requirements. DoALL's semi-synthetic fluids optimize the benefits of synthetics and soluble oils in one fluid. These fluids contain typically 6 to 25% mineral oil and performance enhancing chemical additives. The oil enhances overall tool life and improves surface finish quality. Chemical additives further prolong tool life and provide tramp oil rejection while cleaning the machine and work piece. These coolants provide excellent cooling and keep costs to a minimum. Low oil emulsion levels keep bacteria growth and odour to a minimum and help to extend sump life and reduce disposal costs.

KOOL-ALL 011 ECO

To meet special market requirements for light to medium duty machining operations of customers operating in areas with poor mixing/tap water conditions. Designed for machining and grinding operations on steel, cast iron and aluminium. This fluid does contain EP additives.

KOOL-ALL 144

KOOL-ALL 144 is suitable for grinding and deep grinding of all metals. For machining of steel, nonferrous metals and cast iron. This coolant is free of chlorine, nitrite and secondary amines.

KOOL-ALL 146

KOOL-ALL 146 is suitable for heavy machining of steel, high tensile steel and cast iron. Non-ferrous metals are not stained by this coolant. This coolant is free of chlorine, nitrite and secondary amines.

KOOL-ALL 148

KOOL-ALL 148 is suitable for machining operations in tough steels. Excellent in alloyed steel and high tensile steel. This coolant is free of chlorine, nitrite and secondary amines.

KOOL-ALL 022 ECO

This soluble oil type metal working fluid has a modern preservative package and is dedicated to light duty machining operations in materials such as steel, cast iron and aluminium.

KOOL-ALL 240

KOOL-ALL 240 is generally used for machining and grinding operations of steel, aluminium and cast iron.

KOOL-ALL 243

KOOL-ALL 243 is specifically used for non-ferrous metals like copper and its alloys (bronze, brass). It needs efficient filtration to achieve best results.

KOOL-ALL 244

KOOL-ALL 248

KOOL-ALL 248 is the best for heavy machining operations of tough and difficult to machine steels and alloys. Best results in sawing, deep hole drilling and chipless forming.

Metal working coolants with best cooling performance and amine-free. These amine-free 2nd generation coolants offer excellent protection for operator and environment. These fluids are free of mineral oil, chlorine and amines.

> Metal working coolants with the best cooling performance. All these coolants are free of mineral oil.

Synthetic water-miscible coolants contain no oil and rely on chemical composition and additives for performance. These fluids offer the highest level of cooling, best workplace visibility, and are formulated to minimize operator sensitivity. These fluids are low foaming which is ideal in high-pressure coolant systems and also offer good detergent properties for maintaining free cutting grinding wheels. These synthetic fluids offer a long sump life, are very easy to maintain and have the lowest disposal cost.

KLEEN-KOOL 170

KLEEN-KOOL 170 is especially suitable for all grinding operations such as circular, surface and form grinding. The low foaming characteristics offer an excellent visibility of the work piece. This coolant is free of chlorine, nitrite and secondary amines. For steel and cast iron.

KLEEN-KOOL 174

KLEEN-KOOL 174 is a multi-purpose EP coolant for machining operations in steel, cast iron and non-ferrous metals. Excellent when transparency and high degree of lubrication are required. For machining, grinding and chipless forming operations. This coolant is free of chlorine, nitrite and secondary amines.

KLEEN-KOOL 270

KLEEN-KOOL 270 is a water-miscible, synthetic coolant free of mineral oil. This coolant is formulated for grinding operations on tungsten carbide, and is also suitable for grinding of steel and cast iron. Kleen-Kool 270 avoids cobalt leaching due to a special inhibitor package. This fluid is non sticking or gumming. Efficient filtration is a must for good results. The use of magnetic separators, hydrocyclones or centrifuges may cause a foaming problem.

KLEEN-KOOL 274

KLEEN-KOOL 274 is a coolant with EP additives formulated for use on tungsten carbide, but will also work excellent on steel, cast iron and non-ferrous metals. For machining, grinding and chipless forming.

KLEEN-KOOL 284

KLEEN-KOOL 284 is a high performance coolant suitable for heavy machining operations of aluminium alloys, high tensile steels and special alloys. Excellent results are also achieved in forming operations.

BRIGHT-EDGE® CUTTING OIL

> Cutting oils are blends of premium base oils and provide the highest degree of lubrication, longest tool life, and best surface finish of all metal working fluids. These oils provide long fluid life and have no rust issues associated with their use. Plus, these oils do not require dilution, have low to mild odour, and have the least amount of operator sensitivity. In addition, cutting oils are low misting and non-foaming.

Bright-Edge 200 is a special grinding oil featuring low viscosity, low mist and low evaporation properties. This product is a blend of highly refined base oils of superior quality and free of aromatics. This grinding oil is free of chlorine and heavy metals such as lead, zinc and barium.

Bright-Edge 200 is used for grinding operations on any steel and tool. The specific choice of basic compounds avoids any leaching of cobalt during the process. The high quality surface finish is achieved by the combination of polar EP additives.

Bright-Edge 200 is suited for micro-machining operations like slot cutting, fine drilling and reaming.

BRIGHT-EDGE 210

Bright-Edge 210 is used as a cutting oil for easy and more demanding machining operations on medium tensile steels, cast iron, aluminium and non-ferrous metals. It also suits for magnesium treatment.

BRIGHT-EDGE 230Ti

Bright-Edge is suitable for machining operations, primarily for operations on magnesium and titanium. Sensitive magnesium alloys are not discoloured.

BRIGHT-EDGE 250

Bright-Edge 250 is suitable for heavy machining operations and all kinds of chipless forming operations. Particularly suited for broaching and milling on temperature resistant high tensile stainless steels, such as bearing steel and austenitic steel. This fluid contains polar EP additives avoiding welding of chips between tool and work piece.

Minimal lubrication oils are formulated for use in applications were flood coolants are prohibited or not desired. These oils are used with a pneumatic applicator unit and produce "dry" chips because the oil is consumed totally in the cutting operation. These oils are ideal for most cutting, sawing, turning, tapping, drilling and milling operations when applied directly on the tip of the cutting tool. These oils can be used on almost all steels, including stainless steel, titanium, and nonferrous metals. These oils are a blend of natural raw materials keeping the environment in mind. These products are biodegradable.

AL-2100

AL-2100 is a synthetic lubricant formulated from ester oil. This product can be used as cutting and spray oil and is designed for use in minimal lubrication systems. This lubricant is developed for non-ferrous and light metal working operations where higher cutting speeds are used.

AL-2100HV

AL-2100HV is a synthetic lubricant formulated from ester oil. This product can be used as cutting and spray oil. It is particularly suited for sawing operations to be applied by minimal lubrications systems. Also for machining operations on steel and non-ferrous metals using lower cutting speeds such as key-way broaching.

AL-2100EP

AL-2100EP has been developed for sawing operations of high alloyed and special carbon steel, chrome-nickel-molybdenum steel, nickel alloys and titanium. Offering high cutting performance, outstanding tool life and minimum consumption of cutting fluid.

SPECIAL APPLICATION FLUID

This group of additional fluids is developed to improve the maintenance of the machines as well as to keep the cutting fluids in excellent condition.

WAY-LUBRICANT 068

Way-Lubricant 068 is suitable for workshops equipped with modern CNC machines and machining centres where high positioning accuracy is required to achieve top level of surface finish and component tolerances.

Way-Lubricant 068 distinguishes itself by a rapid and exact demulsifying effect, when working with DoALL coolant emulsions. The emulsion circulating in the machine will not be weakened in its homogenity, stability or consistency, due to a rapid separation of the emulsion from the slide-way oil during standstill of the machine.

This lubricant offers good adhesiveness, low friction values, high pressure absorption, no stick slip and good demulsifying properties.

KLEEN-FLUSH 010 & 020

Kleen-Flush 010 and 020 are cleaning agents. They remove impurities from tooling machines, their coolant tanks and tubing without any additional work. The machine can operate normally during the process. These cleaning agents are based on removing soil, bacterial slime, fungal patches and yeast colonies from surfaces.

Even on inaccessible places! Oil separations and creaming are quickly re-emulsified and loosened dirt is carried by the emulsion.

- Use Kleen-Flush 010 for emulsions <u>containing</u> mineral oils.
- Use Kleen-Flush 020 for solution <u>without</u> mineral oils.

Add 1 - 2% Kleen-Flush to the old emulsion and run for at least 8 hours, than drain system, flush with water and refill system.

ANTI-FOAM 077

Anti-Foam 077 is a mineral oil free de-foaming additive. It is suitable for all water mixed coolants and serves only for re-defoaming. Anti-Foam 077 maintains its anti-foaming effect over a long period, compared to traditional defoamers.

PRESERVATIVE 025

Preservative 025 is a light yellow, pH-neutral additive with low viscosity. It has a broad spectrum of activities against a great number of micro-organisms such as bacteria, fungi, yeast and spores. This additive will recondition used emulsions.

 \bigcirc

FLUID APPLICATION CHART

6	1 A 14	Genera	al	Grindir	ıg	Deep h	ole	Gear cut	ting	Tappin	g	Reamir	ng	Sawin	g	Stampir	ng
		machining, turning, drilling, milling		surface- cylindrical		drilling											
iteels	Standard	KA 011 KA 144 KK 174	4% 3% 3%	KA 011 KA 144 KA 174 KA 170	4% 3% 3% 4%	KA 144 KA 148	4% 4%	KA 146 KA 148	8% 8%	KA 148	4% 4%						
asy to machine s	Amine-free	KA 022 KA 240 KK 274	5% 4% 3%	KA 022 KA 240 KA 274 KK 270	5% 4% 3% 3%	KA 248	5%	KA 248	5%	KA 244 KA 248	6% 5%	KA 244 KA 248	6% 5%	KA 244 KA 248	8% 8%	KA 248	10%
	Straight oil	BE 250						BE 250				BE 250		BE 250			
Ea	Minimum Iubrication	AL-2100 AL-2100EP AL-2100HV												AL-2100 AL-2100EP AL-2100HV		AL-2100EP AL-2100HV	
steels	Standard	KA 146 KA 148 KK 174	5% 4% 3%	KK 170 KK 174	4% 3%	KA 148	4%	KA 148	4%	KA 146 KA 148	5% 4%	KA 146 KA 148	5% 4%	KA 148	8%	KA 148	4%
d to machine	Amine-free	KA 244 KA 248 KK 274	6% 5% 3%	KA 240 KK 270 KK 274	4% 3% 3%	KA 248	5%	KA 248	5%	KA 244 KA 248	6% 5%	KA 244 KA 248	6% 5%	KA 248	8%	KA 248	10%
	Straight oil	BE 250										BE 250		BE 250			
Har	Minimum lubrication	AL-2100EP AL-2100HV												AL-2100EP AL-2100HV		AL-2100EP AL-2100HV	
	Standard	KA 011 KA 144 KK 174	4% 4% 4%	KA 011 KA 144 KK 170 KK 174	4% 5% 5% 3%					KA 144 KA 146	5% 5%			KA 146	10%		
Cast iron	Amine-free	KA 022 KA 240 KK 244 KK 274	6% 4% 6% 4%	KA 022 KA 240 KK 270 KK 274	5% 4% 4% 3%					KA 244	6%			KA 244	8%		
	Straight oil	BE 210 BE 250										BE 250		BE 250			
	Minimum lubrication	AL-2100 AL-2100EP AL-2100HV												AL-2100 AL-2100EP AL-2100HV		AL-2100EP AL-2100HV	
syc	Standard	KA 011 KK 174	5% 3%	KA 011 KK 170 KK 174	4% 4% 3%									KA 146	8%		
uminium allo	Amine-free	KA 022 KA 244 KK 274	5% 6% 3%	KA 022 KK 284 KK 270 KK 274	5% 3% 3% 3%					KA 244	6%			KA 244	8%		
Alu	Minimum Iubrication	AL-2100 AL-2100EP AL-2100HV												AL-2100 AL-2100EP AL-2100HV		AL-2100EP AL-2100HV	
S	Standard	KA 146 KA 148	5% 4%														
im alloy	Amine-free	KA 244 KA 248	6% 6%	KK 284	3%	KK 284	5%	KA 248	6%	KA 248	5%	KK 284	6%	KA 248	8%	KK 284	10%
Titaniur	Straight oil	BE 230Ti												BE 230Ti			
	Minimum Iubrication	AL-2100EP AL-2100HV												AL-2100EP AL-2100HV		AL-2100EP AL-2100HV	
ide	Amine-free			KK 270	3%												
Carb	Straight oil			BE 200													

Calculation for correction of concentration

The percentage of the emulsion is 1/100. First you have to calculate the difference of the concentration and multiple this with the fill capacity of the machine.

For example:

The concentration should be 6% but after measuring with the refracometer you measure 4%, which is a difference of 2% (0,02).

The fill capacity of the machine is 200 liters.

The measured difference should be multiplied with 200 (fill capacity): $0,02 \times 200 = 4$ liters. This means 4 liters of coolants have to be mixed and refilled into the machine.

ATTENTION: The measured percentage with the refractometer allways have to be multiplied with the refractometer factor to determine the exact percentage of concentration. For example you measure 3% and the refractometer factor is 2, the exact concentration is $3\% \times 2 = 6\%$ concentration of coolant.

NOTES

FOR ALL YOUR SAWING NEEDS!

Welcome to DoALL

It started with the metal cutting band saw, invented by our founder Mr. Leighton A. Wilkie in 1933. He was the first to produce all three vital elements for band sawing: band saw blades, sawing machines and cutting fluids.

DoALL invented the Bi-Metal band saw blade and released many improvements over the years. Today we are still the trendsetter in band saw blade technology. We have production facilities in the USA; Canada as well as in Europe.

ISO 9001:2008 quality certification

DoALL is committed to provide you, our customer, with the best products and services available. This ambition resulted in the ISO 9001:2008 certification of our quality system.

At your service!

The European Distribution Center is located strategically in Dordrecht, The Netherlands. Our sawing products are distributed throughout Europe including the Russian Federation and the Middle East. Our factory trained local distributors operate their own welding centers to provide fast and local welding service and offer technical assistance. Gedung Graha Pena, Lt. 9 No. 902B, Batam 29461, Indonesia Tel: (62) 778 464 465 E-mail: sales@lfc.co.id

> 8 Ubi Rd 2, #03-01, Zervex Singapore 408538 Tel: (65) 6749 9697 Fax: (65) 6749 9390 E-mail: sales@lfc.com.sg

DoALL Europa B.V. Debijestraat 14 3316 GE Dordrecht The Netherlands Tel +31 78 652 60 60 Fax +31 78 618 40 85 info@doall.nl www.doall.nl YOUR DISTRIBUTOR:

